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Abstract
The autobiographical implicit association test (aIAT) is an approach of memory detection that can be used to identify true
autobiographical memories. This study incorporates mouse-tracking (MT) into aIAT, which offers a more robust technique
of memory detection. Participants were assigned to mock crime and then performed the aIAT with MT. Results showed that
mouse metrics exhibited IAT effects that correlated with the IAT effect of RT and showed differences in autobiographical
and irrelevant events while RT did not. Our findings suggest the validity of MT in offering measurement of the IAT effect.
We also observed different patterns in mouse trajectories and velocity for autobiographical and irrelevant events. Lastly,
utilizing MT metric, we identified that the Past Negative Score was positively correlated with IAT effect. Integrating the Past
Negative Score and AUC into computational models improved the simulation results. Our model captured the ubiquitous
implicit association between autobiographical events and the attribute True, and offered a mechanistic account for implicit
bias. Across the traditional IAT and the MT results, we provide evidence that MT-aIAT can better capture the memory
identification and with implications in crime detection.

Keywords Mouse-tracking (MT) · Autobiographical implicit association test (aIAT) · Memory detection · Mock crime ·
Neural network model

Introduction

The attempts to detect deception and concealed memories
have evolved for hundreds of years, and captured a broad
interest from fields including psychology, forensics, neuro-
science, and even ethics (Agosta & Sartori, 2013; Chassot,
Klöckner, & Wüstenhagen, 2015; Verschuere, Ben-Shakhar,
&Meijer, 2011; Vrij & Fisher, 2016; Wu, Fu, & Zang, 2010;
Nahari, 2018). Classical behavioral lie detection methods
mainly investigated the RT difference to different stimuli
(of interest vs. irrelevant) as a behavioral index of decep-
tion, e.g., RT-based Concealed Information Test (RT-CIT;
Lykken, 1959; Verschuere et al., 2011). Further, the autobio-
graphical implicit test (aIAT) is an adaptation of the implicit

B Haiyan Wu
haiyanwu@um.edu.mo

1 Centre for Cognitive and Brain Sciences and Department of
Psychology, University of Macau, Taipa 999078, Macau,
China

2 Department of Psychology, The University of Hong Kong,
Hong Kong 999077, Hong Kong, China

association test (IAT) (Greenwald, McGhee, & Schwartz,
1998), which aims to identify the veracity of autobiographi-
cal memories by assessing the associative strength between
subjects’ autobiographical memories and objective events. It
is usually quantified by D scores defined as the differences of
the averaged RTs between incongruent and congruent con-
ditions, which has been validated in memory detection.

RT-based aIAT does not reveal the real-time categoriza-
tion processes, given that only the final behavioral output
(RT and accuracy) is recorded (Yu, Wang, Wang, & Bastin,
2012; Smeding, Quinton, Lauer, Barca, & Pezzulo, 2016).
Although RTs can be modeled (e.g., via drift-diffusion mod-
eling Krajbich &Rangel, 2011), to more precisely isolate the
different components that contribute to RT, the complexity of
these approaches makes interpretation less straightforward.
A promising approach to complete the aIAT is to provide a
real-time measurement of categorization by adding mouse-
tracking (MT) (Duran, Dale, & McNamara, 2010; Still-
man, Shen, & Ferguson, 2018), which offers more precise
millisecond-by-millisecond information on how cognitive
processing underlyingmemory detection unfolds without the
need for complex experimental setups (Stillman et al., 2018;
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Freeman, Ambady, Rule, & Johnson, 2008; Freeman, Dale,
& Farmer, 2011). Empirical analysis of MT data can capture
the temporal dynamics of memory categorization in terms
of spatiotemporal patterns (Sartori, Zangrossi, & Monaro,
2018; Freeman, 2018).

In the last decade, mouse-tracking has gained significant
and increasing traction in various fields of cognitive science,
primarily due to its methodological and theoretical bene-
fits (Stillman et al., 2018; Melnikoff, Mann, Stillman, Shen,
& Ferguson, 2021). Compared to traditional reaction times
(RTs), MT has proven to be especially effective in isolat-
ing the dynamics of response conflict by measuring how
directly participants approach their decisions (Freeman et
al., 2008). This technique allows researchers to map out the
stages involved in the decision-making process (Kieslich &
Henninger, 2017), with the assumption that mouse move-
ments (i.e., hand movements) are executed in parallel with
the decision that participants are required to make (Free-
man, Pauker, Apfelbaum, & Ambady, 2010). For instance,
a quick and direct trajectory may indicate reliance on intu-
itive processing, while more convoluted paths could suggest
a deliberative approach where options are pondered before
settling on a choice. Consequently, mouse-tracking has been
effectively applied across numerous areas, including lan-
guage (Potamianou & Bryce, 2024; Spivey, Grosjean, &
Knoblich, 2005; Richter, Lins, & Schöner, 2021), social cog-
nition (Schoemann, O’Hora, Dale, & Scherbaum, 2021), and
memory (Gatti, Rinaldi, Marelli, Mazzoni, & Vecchi, 2022).
These studies converge in finding that measures derived from
the manual dynamics of response, e.g., the mouse trajecto-
ries, are sensitive enough to capture small effects that often
escape simple reaction time measures.

Recent work has successfully incorporated MT in decep-
tion tasks (Pang et al., 2022; Wu, Cao, Bai, & Chen, 2021)
or with IAT (Yu et al., 2012; Monaro, Gamberini, & Sartori,
2017a). For example, Yu et al. (2012) integrated the mouse-
tracking to a flower-insect IAT and two implicit self-esteem
IATs, which showed both classical RT-based IAT effects and
the potential ofmouse trajectories in revealing the underlying
process of IAT. Monaro, Negri, Zecchinato, Gamberini, and
Sartori (2021b) also demonstrated the effectiveness of MT-
IAT to assess implicit preferences towards social networks
such as Facebook and Twitter, extending the MT-IAT to a
novel field such as consumer research. The covert nature of
MT and the real-time nature, continuous motor trajectories
are also instrumental in memory detection tasks (Sartori et
al., 2018; Papesh&Goldinger, 2012). For instance, in a word
recognition task, participants made new/old decisions while
being tracked to their mouse coordinates and then underwent
a confidence assessment. By examining response trajecto-
ries and subsequent confidence, the researchers found that
stronger memories corresponded to fast linear movements

(Papesh & Goldinger, 2012). Taken together, MT could
provide continuous spatiotemporal information in assessing
attitudes and memory strength. Therefore, we combined MT
with aIAT to test its effectiveness in detecting autobiograph-
ical memories.

RT and MT data of aIAT can also be incorporated with
computational modeling (Wu et al., 2021; Xu, Yang, Huang,
Wang, & Wu, 2023). A commonly used model in RT-based
choices is the drift-diffusion model (DDM), which has been
proven to be a powerful method for revealing internal prop-
erties of decision-making processes of both humans and
rodents (Brunton, Botvinick, & Brody, 2013; Chen & Kra-
jbich, 2018). In traditional DDM, the information begins at
the postulated position z and accumulateswith time at a speed
v. The accumulation of information includes systematic and
random influences. A decision is made when the accumu-
lated evidence reaches the threshold (Klauer, Voss, Schmitz,
& Teige-Mocigemba, 2007). If ambivalence in decision-
making arises from the amount of information necessary
to make a decision or the speed of information accumu-
lation, individual variability in AUC (Bodily et al., 2015;
Lopez, Stillman, Heatherton, & Freeman, 2018; Leontyev &
Yamauchi, 2021) should be mirrored in the variability of the
drift rate. One problem exhibited when incorporating DDM
with IAT is that in standard binary decision-making tasks,
such as the moving dot paradigm (Huk & Shadlen, 2005),
sensory evidence in favor of eachmotor output is experimen-
tally defined (i.e., as the relative proportion of dots moving
in each direction). In the case of the IAT, however, it is less
clear how sensory evidence should be established for each
visual stimulus. To bridge the gap between the non-value-
based experiment (aIAT) and this precisely described model,
here we used the connectionist model (Bedder et al., 2019)
to quantify the strength of sensory information, which was
modulated by individual traits.

In this study, we incorporated MT with aIAT in a mock
crime scenario to demonstrate how the movements in hand
can detect concealed autobiographical memories, and we
employed model simulation to offer a more precise mecha-
nistic account of aIAT. The specific objectives of the current
study are to: 1) validate all the mouse tracking metrics
(MAD, AD, AUC, and MD) and whether they possess IAT
effects as RT does; 2) prove the MT offers complementary
insights of RT IAT. Thus we hypothesized that: 1) MT met-
rics would be able to possess significant IAT effects to detect
the concealed memory; 2) trajectories of crime-relevant and
crime-irrelevant exhibit differences; 3) model simulations
performs better when integrating the MT metric. Our work
goes significantly beyond the current literature by provid-
ing memory detection that integrates mock crime, MT, and
aIAT, with a more comprehensive analysis of the IAT effect
and relevant MT dynamics.
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Methods

Participants

Fifty-eight healthy undergraduate and graduate students (31
males,Mage = 21.19, SD = 2.24; 27 females,Mage = 21.30,
SD = 2.43) participated in this experiment. They were ran-
domly assigned to the congruent-block first group or the
incongruent-block first group (see Section “Procedure”).
Specifically, 33 participants (16 males, Mage = 21.28,
SD = 2.44; 17 females,Mage = 21.63, SD=2.59) signed up
for congruent-block first task and 25 participants (14 males,
Mage = 21.09, SD = 2.07; 11 males, Mage = 21.04, SD =
2.08 ) signed up for the other group. All participants were
right-handed with normal or corrected-to-normal vision, and
had not participated in any similar studies. Each participant
signed informed consent prior to the formal experiment, and
the local ethical review committee approved the experimen-
tal protocol. At the end of the study, the participants were
paid 50–60 CNY.

Power calculation

To achieve greater than 80% power to detect a large effect
of d = 0.80 at α = 0.05 in our analyses of paired t tests, we
calculated the minimal sample size, which was 14, using the
package pwr in R (Champely et al., 2018). We oversampled
and recruited 58 participants (33 participants for the congru-
ent block first group and 25 participants for the incongruent
block first group). We have also tested the power with other
statistics. For the correlation between ZTPI score and IAT
effect using MD (Fig. 5), the power was 0.54.

Procedure

Before starting the task, participants were asked to com-
plete the interactive mentalizing questionnaire (IMQ) (Wu
et al., 2022, 2020) and Zimbardo Time Perspective Inven-
tory (ZTPI) (Zimbardo & Boyd, 2013).

Mock crime session

Themockcrime settinghas beenused in existing aIATstudies
(e.g., Sartori,Agosta, Zogmaister, Ferrara,&Castiello, 2008;
Verschuere et al., 2009; Agosta et al., 2011; Hu et al., 2012).
Participants were asked to select one out of two envelopes,
deciding which task they were going to perform. The content
in the two envelopes was actually the same – to steal the
credit card (see Verschuere et al., 2009). However, they were
informed that one of the tasks was to steal a credit card from
a wallet, and the other was to copy a confidential file on a
computer. This brought participants a sense of involvement to
‘commit the crime’ and drove them to perform the task with

self-motivation. After revealing the task in the envelope, they
were guided to a lab room (mock crime room) to find the
wallet and steal the credit card. To increase the ecological
validity, the experimenter informed participants before the
session that they had to withdraw from the experiment if
caught during the mock crime session.

The mock crime room was arranged before every partic-
ipant came in. Stealing the credit card consisted of several
steps thatwere the same for every participant (see Fig. 1A; for
detailed steps for crime-relevant and crime-irrelevant events,
see supplemental materials 1)

MT-aIAT task

After the mock crime session, participants were arranged to
sit in front of a monitor in another lab room (testing room) to
complete the aIAT session. The aIAT was performed using a
procedure analogous similar to previous work (Sartori et al.,
2008; Marini, Agosta, & Sartori, 2016), while implemented
with a mouse tracker to record the mouse trajectories. The
stimuli were presented through Mousetracker (http://www.
mousetracker.org/), which recorded the mouse position (x
and y coordinates) about 70 times per second (70 Hz). Partic-
ipants were instructed to click START at the bottom center of
the screen for each trial, then the event stimulus (see detailed
stimuli in supplemental materials 1) showed up in the center.
They were instructed to classify the stimulus by clicking the
key at the left upper corner of the screen (R1) or the key at
the right upper corner (R2) (see Fig. 1). Participants were
required to move the mouse quickly and accurately in the
task; otherwise, a reminder would appear to urge them to
respond as quickly as possible.

The aIAT was structured in seven blocks, including three
simple blocks (blocks 1, 2, and 5) and four combined blocks
(blocks 3, 4, 6, and 7):

• Block 1 (20 trials) required all participants to make
a binary classification based on the stimuli’s logical
attributes: they were asked to discriminate whether the
sentence displayed was objectively true (e.g., “I am on
the third floor”) or false (e.g., “I am in a shop”), and click
the corresponding key (R1 for true and R2 for false).

• In block 2 (20 trials) and block 5 (20 trials), participants
classified the stimulus only depending on whether it was
associatedwith the crime-relevant event (event 1: stealing
the credit card from awallet) they had committed (e.g., “I
opened thewallet”) or the crime-irrelevant event (event 2:
copying a confidential file on a computer; e.g., “I inserted
the USB”), and clicked the corresponding corner/area.

• Block 3 (60 trials), block 4 (200trials), block 6 (60 trials),
and block 7 (200 trials)were the combined blocks, requir-
ing participants to categorize both “objectively true or
false” events and “crime -relevant or -irrelevant” events.
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The four combined blocks were subdivided into con-
gruent blocks and incongruent blocks. In the congruent
blocks, event 1 and the objectively true sentences shared
the same motor response R1 (’event1 + true’), while
stimuli related to event 2 and objectively false sentences
shared the same motor response R2 (’event2 + false’).
In the incongruent blocks, the respondents learn a rever-
sal of response assignment where the two combinations
change to ‘event1 + false’ and event2 + true’.

To eliminate the order effect, block order was counter-
balanced across participants. For the congruent-block first
group, R1 corresponded to event 1 and R2 corresponded to
event 2 in block 2 while the response pattern was reversed in
block 5. Also, block 3 and block 4 were congruent blocks,
while block 6 and block 7 were incongruent blocks. For the
incongruent-block first group, R1 corresponded to event 2,
and R2 corresponded to event 1 in block 2; while in block 5,
the response pattern was reversed. Also, block 3 and block
4 were incongruent blocks, while block 6 and block 7 were
congruent blocks.

Mouse-tracking data analysis

Mouse trajectory preprocessing

Standard mouse-tracking preprocessing was conducted tem-
porally and spatially (Freeman&Ambady, 2010). In a typical
binary choice design, trajectories end at either the left or the
right response option. For those analyses where the overall
spatial direction is irrelevant, all trajectories were remapped
so that they would end on the same side. We used the R
package ‘mousetrap’ (Kieslich & Henninger, 2017) to map
the trajectories to the left by default, suggesting that trajec-
tories that end on the right-hand side are flipped from right
to left. We rescaled all mouse trajectories into a standard
coordinate space (top left: [-1, 1]; top right: [1, 1]) so that
the cursor always started at [0,0] (Sullivan, Hutcherson, Har-
ris, & Rangel, 2015). Temporally, time normalization was
applied to the trajectories such that the duration of each trial
was divided into 101 identical time bins using linear inter-
polation to obtain the average of their length across multiple
trials (Spivey et al., 2005;Dale,Kehoe,&Spivey, 2007; Free-
man et al., 2008; Freeman et al., 2010; Duran et al., 2010;
Sullivan et al., 2015).

Mouse trajectory measurements

To get the trial-by-trial category co-activation index, we cal-
culated the signed maximum absolute deviation from the
direct path (MAD), the average deviation from direct path

(AD),the maximum deviation above the direct path (MD)
and the area under the curve (AUC) of each mouse trajec-
tory by R packageMousetrap (Kieslich &Henninger, 2017).
Also, velocity as distance covered per normalized time inter-
val was calculated.

Temporal analysis

After preprocessing the mouse trajectories, we split the tri-
als into congruent and incongruent conditions. To test the
significant temporal difference between trajectories statisti-
cally, we calculated the x positions and velocity along with
time bins of every trial and compared them through paired
t test (Chemin, Huang, Mulders, &Mouraux, 2018; Kieslich
& Henninger, 2017). Besides, we split trials into crime-
relevant and crime-irrelevant events, and further examined
the discrepancy between the two conditions (congruent vs.
incongruent).

IAT effect

Data from blocks 4 and 7 were extracted for analysis. Trials
with RTs of> 10 s and participants who have> 10% of trials
with RTs < 300 ms are excluded. In addition, RTs for error
trials were removed. The IAT effect was calculated through
all metrics (RT, MAD, AD, MD, AUC) by the mean met-
ric across congruent trials subtracted from the mean metric
across incongruent trials, normalized by the standard devia-
tion of all trials (Eq. 1).

IAT effect = ¯metricincon − ¯metriccon
ST Dall

(1)

Simulations of the IAT effect

Connectionist model

The connectionist model is comprised of four neural sub-
populations that respond to the perception of four features,
including crime-relevant (CR), and crime-irrelevant (CI),
True, False within the agent (see Fig. 4B) (Bedder et al.,
2019). When the agent perceives stimuli related to them-
selves (CR or True), a neuro-modulatory signal allows
synaptic connections between active sub-populations encod-
ing CR and True to be strengthened by a Hebbian learning
rule (Hebb, 2005). In this case, the simulated agent com-
mitted crime-relevant events as our participants did, such
that the connectionist model comes to encode strong asso-
ciations between neurons encoding crime-relevant (CR) and
True features. During subsequent perception, sensory input
to sub-populations encoding the features of that agent gener-
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ates additional activity in the network via recurrent synaptic
connections if those features overlap with the encoded fea-
tures(see Fig. 4B).

To examine changes in the dynamics of the connectionist
model when Past Negative Score (PN) of simulated agents
is systematically varied (Fig. 4B, left panel) and affects IAT
effect of crime-relevant events (Fig. 4A),we simplymodulate
the level of external stimulation to neurons in the connection-
ist model coding for CR and True during the initial 10-s and
subsequent 2-s learning periods, such that those neurons fire
at a lower rate while the agent encodes associations between
its autobiographical features. Specifically, we vary the level
of constant current to neurons encodingCRandTrue between
I_ext=0.8 and I_ext=1.3, which is linearly dependent on the
Past Negative (PN) Score. All other neurons encoding fea-
tures of the simulated agent receive a constant current input of
I_ext=1.3. For detailed algorithms, see SupplementaryMate-
rials 2.

Drift-diffusion models (DDM)

Behavioral performance on the aIAT can be modeled with
DDM (Wong, Huk, Shadlen, & Wang, 2007; Klauer et
al., 2007; Van Ravenzwaaij, van der Maas, & Wagenmak-
ers, 2011) consisting of two self-excitatory but mutually

inhibitory neural populations (Bedder et al., 2019). These
two neural populations code for left and right motor outputs,
respectively (see Fig. 4C, left panel). External sensory evi-
dence integrated with noise accumulates until the firing rate
of one population reaches a pre-defined decision threshold
(Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Koop
& Johnson, 2013; Ratcliff & Rouder, 2000). The time taken
to reach the decision threshold produces an RT, while the
winning population corresponds to the decision made. In our
simulations, the sensory evidence provided to each DDM
motor population in each aIAT trial is determined by activity
in the connectionist model (see Fig. 4C, left panel). Neurons
coding for the aIAT stimulus receive a set level of external
sensory input, while additional input to eithermotor response
population arises from recurrent excitation within the con-
nectionist model. As a result, the left neural population in the
congruent condition is the earliest one to reach the thresh-
old; thus, the participants were most likely to choose the left
option, and the RTs of the congruent condition was signifi-
cantly smaller than those of incongruent condition.

Specifically, the variation in the dynamics of evidence
accumulation is systematically dependent on the time con-
stant τs (see Supplementary Materials 2). We modulate the
level of τs according to MT metric AUC (see Fig. 4C, right
panel) ranging from 55 to 65. For detailed algorithms, see
Supplementary Materials 2.

Fig. 1 (A) Task procedure. (Left panel) Participants were asked to steal
the credit card in themock crime room,which consisted ofmultiple steps
e.g., opening the door, and finding the drawer key (for detailed steps
for crime-relevant and crime-irrelevant events, see supplemental mate-
rials 1). (Right panel) Having stolen the credit card, they were arranged
to perform the aIAT using a computer mouse. Every trial started with
clicking of the START button at the bottom center of the screen. The
stimuli then showed up in the center of the screen. Participants were
instructed to classify the stimulus by clicking the key at the left upper

corner of the screen or the key at the right upper corner. They were
required to move the mouse quickly and accurately in the task; other-
wise, a reminder would appear to urge them to respond as quickly as
possible. (B) IAT effects calculated through RT and MT metrics (left
panel) were highly correlated (right panel). (C) Separate IAT effects
for true+CR stimuli and false+CI stimuli. IAT effect of RT was not
significant between these two kinds of stimuli, while three of the MT
metrics showed significant differences (for detailed statistical results,
see Table S1 in supplemental materials 3)
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Results

The data for the following results was based on block 4 and
block 7.

IAT effect of MTmetrics

IAT effects were calculated using RT and all MT met-
rics respectively (see Methods “IAT effect”), which were
significantly larger than 0 (see Fig. 1B, left panel; AD:
t57 = 4.76, p < 0.001, 95% CI from 0.08 to 0.20; AUC:
t57 = 3.21, p = 0.002, 95% CI from 0.04 to 0.16; MAD:
t57 = 4.17, p < 0.001, 95% CI from 0.07 to 0.21; MD:

t57 = 4.27, p < 0.001, 95% CI from 0.08 to 0.22; RT:
t57 = 5.59, p < 0.001, 95% CI from 0.19 to 0.39).
IAT effects calculated from MT metrics were significantly
smaller than those calculated from RT (RT vs. AD: t57 =
3.27, p = 0.002, 95% CI from 0.06 to 0.23; RT vs. AUC:
t57 = 3.90, p < 0.001, 95% CI from 0.09 to 0.29; RT vs.
MAD: t57 = 3.25, p = 0.002, 95%CI from 0.06 to 0.24; RT
vs. MD: t57 = 3.07, p = 0.003, 95% CI from 0.05 to 0.23).
To validate the IAT effect of MTmetrics, we performed pair-
wise correlation between all IAT effects, and found theywere
inter-correlated (see Fig. 1)B, right panel; for detailed statis-
tical results, see Table S1 in supplemental materials 3). Our
goal was to discriminate which ‘crime’ participants commit-

Fig. 2 Mean trajectories and velocity as a function of condition (congruent vs. incongruent) for (A) merged and respective events ((B) real vs. (C)
unreal)
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ted, so we compared IAT effects of real events (objectively
true and crime-relevant events) and unreal events (objectively
false and crime-irrelevant events).We foundMTmetrics pre-
sented larger IAT effect for real events than unreal events
(AD: t57 = 2.00, p = 0.05, 95% CI from 0 to 0.28; AUC:
t57 = 2.35, p = 0.02, 95% CI from 0.03 to 0.33; MAD:
t57 = 2.22, p = 0.03, 95% CI from 0.02 to 0.31; MD:
t57 = 2.20, p = 0.03, 95% CI from 0.01 to 0.31), while IAT
effect of RT did not(t57 = 0.76, p = 0.45, 95% CI from -
0.05 to 0.11).Moreover, whenwe combined crime-irrelevant
events with objectively true events and crime-relevant events
with objectively false events to examine their IATeffect, there
was no difference across all metrics (see Fig. S1 in supple-
mentary material 3).

Meanmouse trajectories

Figure 2(left panel) visualizes themean trajectories as a func-
tion of condition (congruent vs. incongruent) for respective
events (real vs. unreal). Consistent with the IAT effect, mean
trajectories of both events (merged) exhibited a significant
difference between the two conditions was apparent (AUC:
t57 = 3.02, p = 0.004, 95% CI from 0.01 to 0.05; see
Fig. 2Aupper, left panel). For only real events,mean trajecto-
ries exhibited a larger difference between the two conditions
(AUC: t57 = 4.86, p < 0.001, 95% CI from 0.04 to 0.09;
see Fig. 2A, middle left panel). In contrast, for the only

unreal events, there was no difference between two condi-
tions (AUC: t57 = 0.26, p = 0.80, 95% CI from -0.04 to
0.05; see Fig. 2A, lower left panel).

Velocity across normalized time bins was also calculated,
since the changes in the velocity of trajectories were pre-
dicted by models assuming nonlinear competitive dynamics
over time (Usher&McClelland, 2001).We found that for real
events, velocity under two conditions reached the maximum
in step 56 (congruent) and step 64 (incongruent), respec-
tively, while for merged and unreal events, velocity under
two conditions reached the maximum in step 57 (congruent)
and step 59 (incongruent), which was less discriminable.

We also visualized the mouse trajectories and velocity for
two subgroups (congruent-first group and incongruent-first
group; Fig. 3). Though they exhibited different patterns as
the datamerging them together, there still were discrepancies
between true+CI and false+CR stimuli either in trajectories
or velocity for both subgroups.

Modulating implicit bias using Past Negative (PN)
Score and AUC

Combining MT data and questionnaire data together, we
found a correlation between Past Negative Score and the IAT
effect of MD/MAD for real events (see Fig. 4A, upper panel;
MD: r = 0.27, p = 0.03; MAD: r = 0.27, p = 0.04). In
contrast, IAT effect calculated fromRT for real events did not

Fig. 3 Mean trajectories and velocity as a function of condition (congruent vs. incongruent) for (A) congruent first group and (B) congruent first
group
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show any correlation with Past Negative Score (see Fig. 4A,
lower panel; r = 0.04, p = 0.75).

According to Bedder et al. (2019), the mechanistic expla-
nation of implicit bias focuses on a ‘self-image’ network
in the brain comprised of neurons that selectively respond
to various features that might constitute elements of a per-
son’s self-image (i.e., events he/she has done, objectively true
events in our case). These neurons are activated by exter-
nal sensory input whenever those features are perceived.
Importantly, perception of the agent’s own features enables
associations to develop between active neural populations in
the self-image network throughHebbian learning (Hasselmo,
2006; Hebb, 1949); see Methods “Connectionist model”).
Here, one important property of the self-image network is
that feature encoding is not necessarily binary, which can
be exploited to examine the effect of differences in Past
Negative Score on the magnitude of IAT effects. When an
agent is learning its own features, a lower PN score can be
represented by reduced firing rates in the neural population
encoding actual features, leading to lower synaptic weights
between this population and those encoding other features in
the self-image network (see Fig. 4B).

Having generated the firing rate in the self-image network,
we required the model to generate behavioral output. Binary
decision-making processes, such as the IAT, have been exten-
sivelymodeled using drift-diffusionmodels. In thesemodels,
two self-excitatory but mutually inhibitory neural popula-
tions noisily integrate sensory evidence for opposing motor

responses until a firing rate threshold is reached, resulting
in a decision (Bogacz et al., 2006; Klauer et al., 2007).
If ambivalence in decision-making arises from the amount
of information necessary to make a decision or the speed
of information accumulation, individual variability in AUC
(Leontyev & Yamauchi, 2021; Lopez et al., 2018; Bodily et
al., 2015) should bemirrored in the variability of the drift rate
(Fig. 4C), that is, τs in Eq. 11 in supplemental materials 2.

The simulation results of IAT effect

To this end, we set up four models with a combination of
PN and AUC as modulators (see Fig. S2 in supplemental
materials 3). The simulated IAT effects were compared to
empirical results in multiple indices, suggesting the model
with both PN and AUC as modulators performed the best
(see Fig. S3). First, we compared the simulated overall IAT
effect with the empirical overall IAT effect, and found that
overall IAT effect generated by model 1 not only correlates
with the empirical data (Fig. 5A) but also showed no signifi-
cant difference. After splitting the IAT effect into real events
and unreal events, IAT effects generated by model 1 still cor-
related with the empirical IAT effects of RT andMTmetrics.
Finally, if we compared the simulated IAT effects between
real and unreal events, the pattern of IAT effects was as same
as empirical IAT effect calculated usingMTmetric rather RT
(t57 = 2.65, p = 0.01, 95% CI from 0.09 to 0.64).

Fig. 4 (A) Correlation between Past Negative Score and the IAT effect
of MD/MAD for real events (MD: r = 0.27, p = 0.03; MAD:
r = 0.27, p = 0.04). In contrast, IAT effect calculated from RT for
real events did not show any correlation with Past Negative Score

(r = 0.04, p = 0.75). (B) Synaptic weights in the self-image net-
work model are modulated by PN score. (C) The drift rate of DDM is
modulated by AUC
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Fig. 5 (A) The simulated overall IAT effect correlated with empirical
IAT effect. (B) The simulated IAT effects for overall events, real events
and unreal events were all correlated with empirical effects using RT

andMTmetrics. (C) The simulated IAT effect for real events was larger
than unreal events, which was different from the empirical IAT effect
of RT, but was the same as the empirical IAT effect of MT metrics

Discussion

In general, the present results confirmed the validity of the
MT metrics in memory detection. MT metrics replicated the
classic RT-based IAT effects (see Fig. 1B). Moreover, MT
metrics showed significant discrepancies between real and
unreal events while RT did not(see Fig. 1C). MT metrics
allowed us to quantify the extent and intensity of conflict
during decision-making (Freeman et al., 2008). By calcu-
lating the IAT effect with MT metrics, we could identify
the difference in hesitation between congruent and incongru-
ent conditions was larger for true and crime-relevant events.
MT metrics could also reveal the speed-accuracy trade-off
in decision-making (Banholzer, Feuerriegel, Fleisch, Bauer,
& Kowatsch, 2021). A quick, direct trajectory with a low
AUC indicates a rapid decision-making process likely fueled
by clear preferences or strong prior knowledge. The mouse
trajectories and velocity also demonstrated different pattern
under congruent and incongruent conditions for these two
kinds of events (see Fig. 2). Our results demonstrated the
feasibility of the MT method in aIAT for detecting memory
or crime. Despite providing a static and dynamic view of the
cognitive process, there are several other advantages to using
mouse dynamics as an indicator of memory detection. First,
MT can be implemented covertly, without participants’ con-
sciousness of the memory detection purpose (Sartori et al.,
2018). Second, studies have shown high accuracy of the false
identity detection task based onMT, indicating the reliability
of MT-based memory detection in specific contexts (Monaro
et al., 2017a; Monaro, Gamberini, & Sartori, 2017b). Third,
the MT technique can be easily used among large samples
(Sartori et al., 2018). Fourth, the validation of various mouse
indices extended the form of congruency effect in traditional
IAT that is only focused on RTs. It offered new indices on
classifying the autobiographical event that could be used in
machine learning methods, in some aspects improving the
classification accuracy. Further, the practical implications of
our mouse-tracking memory detection method for forensic
applications are multifaceted and significant. By analyzing

the subtle behavioral patterns captured through mouse track-
ing, investigators can identify inconsistencies or signs of
fabrication that might not be apparent through traditional
interrogation methods. Based on the above advantages, MT
has some possible application prospects, such as false iden-
tity detection, concealed criminal memories detection, and
malingering in the forensic and clinical field (Rosenfeld,
2018; Monaro et al., 2021a).

The basic idea of IAT is based on associations between
the stimuli and the concept, which can be captured by both
RT and MT. When participants perceived a stimulus, the
stimulus automatically activates the concept itself as well as
spreading activation to its linked associations. The strength
of the associations varied between congruent and incongru-
ent blocks. It is indicated that activation spreads faster if the
association between concepts is strong, and spreads more
slowly when the strength of association is weak (Verhulst
& Lodge, 2013). Meanwhile, cues of prior experience could
then trigger an essentially ‘automatic’ pattern of activation
in memory that can be described in neural network or con-
nectionist models (Hopfield & Tank, 1986; Queller & Smith,
2002). The strength of co-activation could be modulated by
personal traits (Bedder et al., 2019). Following previouswork
using output from the self-image network to drive a DDM of
binary decision (Bedder et al., 2019; Wong & Wang, 2006;
Wong et al., 2007), we could also infer the magnitude and
reactivation of the memory during the response. In our work,
we postulate a simple connectionist model to quantify the
strengths of sensory evidence as well as their associations
and use the DDM tomodel behavioral performance after per-
ceiving sensory information. Specifically, we varied the level
of constant current to neurons encoding CR and True, which
is linearly dependent on the Past Negative (PN) Score. Then
we use the sensory evidence derived from the connectionist
model to drive the DDM. We presented that the connection-
ist model could offer a mechanistic account of resonance
with crime-related events, and explain mental associations
and their influence on the aIAT performance.
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DDM has a profound impact in providing a mechanis-
tic account of binary decision-making (Wong et al., 2007;
Wong & Wang, 2006), by which we were able to simu-
late the behavioral performance on the aIAT to measure the
quantity of implicit association. The DDM assumes that a
binary decision-making process equals the accumulation of
two sides of competing evidence (Shen et al., 2023; Chen &
Krajbich, 2018).Moreover, the decision ismade once the one
side of the evidence reaches the threshold (Ratcliff&Rouder,
2000). The accumulation speed of the autobiographical asso-
ciation will be faster due to the activation of memory, which
can be reflected by AUC ofMT (Bodily et al., 2015; Lopez et
al., 2018). Therefore,wefirst show that IATeffect ofMTmet-
rics help us find the personal trait that affected the strength of
the IAT effect. Then, we used the personal trait to modulate
the level of constant current to neurons in the connectionist
model. We also integrated AUC into the drift rate of DDM,
so we could better capture the individual variability in IAT
effect (see Fig. S3 in supplementary materials 3).

Taken together, the MT paradigm still has much room
for further exploration and practice in the future, especially
in combination with aIAT. It is essential to acknowledge
the potential limitations of the mouse-tracking approach
in real-world scenarios. Laboratory settings, where most
mouse-tracking studies are conducted, differ markedly from
real-life environments. Additionally, while mouse-tracking
provides another layer of evidence, it should not be used in
isolation. Forensic professionals must integrate these find-
ings with other forms of evidence and expert analyses to
form a comprehensive understanding of a case. Therefore,
the applicability of lab-derived findings to real-world foren-
sic contexts needs further validation through field studies
and evidence combination in actual forensic conditions. To
verify the accuracy advantage that MT brings to aIAT, addi-
tional experiments would be desirable, as this study is limited
to only one mock crime condition in a laboratory context.
Although we used a single experimental scenario setting to
control experimental variables better so that factors affect-
ing IAT effects, such as block order, could be effectively
investigated, it would also make the generalizability of the
findings limited. Though studies have shown high validity
of MT-based memory detection in specific contexts (Monaro
et al., 2017a, b), further efforts are needed to validate the
predictive accuracy of aIAT with MT and refine the compat-
ibility in various contexts. As MT is covert, the test can be
administered to the participant without revealing its memory
detection purpose (Sartori et al., 2018), researchers should
be aware of the massive ethical implications of implement-
ing an MT-based memory detection task and give informed
consent to the subjects properly. Besides, a considerable con-
troversy in IAT and aIAT is that discrimination of effect size
on the individual level is not strong enough (Blanton et al.,

2009; Vargo & Petróczi, 2013; Greenwald, Banaji, & Nosek,
2015), future efforts on improving the predictive validity can
be one step further towards possible practical applications.

Conclusion

In sum, this study assesses and confirms the validity of MT
in aIAT for detecting concealed memory in a mock crime
scenario. The temporal MT data could investigate the dis-
crepancy between different conditions for real and unreal
events. Also, a connectionist model combined with DDM is
used to offer a mechanistic account of how personal traits
and MT metrics could help reveal the cognitive process of
aIAT. The simulation results are not only consistent with the
behavioral results but also can explain the individual vari-
ability.
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